"Did I Say Something Wrong?" A Word-Level Analysis of Wikipedia Articles for Deletion Discussions
نویسنده
چکیده
This thesis focuses on gaining linguistic insights into textual discussions on a word level. It was of special interest to distinguish messages that constructively contribute to a discussion from those that are detrimental to them. Thereby, we wanted to determine whether “I”and “You”-messages are indicators for either of the two discussion styles. These messages are nowadays often used in guidelines for successful communication. Although their effects have been successfully evaluated multiple times, a large-scale analysis has never been conducted. Thus, we used Wikipedia Articles for Deletion (short: AfD) discussions together with the records of blocked users and developed a fully automated creation of an annotated data set. In this data set, messages were labelled either constructive or disruptive. We applied binary classifiers to the data to determine characteristic words for both discussion styles. Thereby, we also investigated whether function words like pronouns and conjunctions play an important role in distinguishing the two. We found that “You”-messages were a strong indicator for disruptive messages which matches their attributed effects on communication. However, we found “I”-messages to be indicative for disruptive messages as well which is contrary to their attributed effects. The importance of function words could neither be confirmed nor refuted. Other characteristic words for either communication style were not found. Yet, the results suggest that a different model might represent disruptive and constructive messages in textual discussions better. Zusammenfassung Diese Arbeit beschäftigt sich damit, linguistische Erkenntnisse auf Wortebene über schriftlichen Diskussionen zu gewinnen. Die Unterscheidung zwischen Botschaften, welche sich förderlich auf Diskussionen auswirken und jene, welche diese unterbrechen, spielte dabei eine besondere Rolle. Hierbei lag ein Schwerpunkt darauf, zu ermitteln, ob Ichund Du-Botschaften charakteristisch für die beiden Kommunikationsarten sind. Diese Botschaften sind über Jahre hinweg zu Empfehlungen für erfolgreiche Kommunikation avanciert. Ihre zugeschriebene Wirkung wurde zwar mehrfach bestätigt, jedoch geschah dies stets in kleineren Studien. Deshalb wurde in dieser Arbeit mithilfe der Löschdiskussionen der englischen Wikipedia und der Liste gesperrter Nutzer eine vollautomatische Erstellung eines annotierten Datensatzes entwickelt. Dabei wurden Diskussionsbotschaften entweder als förderlich oder schädlich für einen konstruktiven Diskussionsverlauf markiert. Dieser Datensatz wurde anschließend im Rahmen einer binären Klassifikation verwendet, um charakteristische Worte für die beiden Kommunikationsarten zu bestimmen. Es wurde zudem untersucht, ob anhand von Synsemantika (auch bekannt als Funktionswörter) wie Pronomen oder Konjunktionen eine Entscheidung über die Kommunikationsart einer Botschaft getroffen werden kann. Du-Botschaften wurden, übereinstimmend mit ihrer zugeschriebenen negativen Auswirkung auf Kommunikation, als schädlich in den durchgeführten Untersuchungen identifiziert. Entgegen der zugeschriebenen positiven Auswirkung von Ich-Botschaften, wurde bei diesen ebenfalls eine schädlich Wirkung festgestellt. Eine klare Aussage über die Relevanz von Synsemantika konnte anhand der Ergebnisse nicht getroffen werden. Weitere charakteristische Worte konnten nicht festgestellt werden. Die Ergebnisse deuten darauf hin, dass ein anderes Modell textliche Diskussionen potentiell besser abbilden könnte.
منابع مشابه
Extracting Imperatives from Wikipedia Article for Deletion Discussions
Wikipedia contains millions of articles, collaboratively produced. If an article is controversial, an online “Article for Deletion” (AfD) discussion is held to determine whether the article should be deleted. It is open to any user to participate and make a comment or argue an opinion. Some of these comments and arguments can be counter-arguments, attacks in Dung’s (1995) argumentation terminol...
متن کاملIdentifying Sensible Participants in Online Discussions
This paper investigates the problem of identifying participants in online discussions whose contribution can be considered sensible. Sensibleness of a participant can be indicative of the influence a participant may have on the course/outcome of the discussion, as well as other participants in terms of persuading them towards his/her stance. The proposed sensibleness model uses features based o...
متن کاملAdvertising Keyword Suggestion Using Relevance-Based Language Models from Wikipedia Rich Articles
When emerging technologies such as Search Engine Marketing (SEM) face tasks that require human level intelligence, it is inevitable to use the knowledge repositories to endow the machine with the breadth of knowledge available to humans. Keyword suggestion for search engine advertising is an important problem for sponsored search and SEM that requires a goldmine repository of knowledge. A recen...
متن کاملTowards Automatic Classification of Wikipedia Content
Wikipedia – the Free Encyclopedia encounters the problem of proper classification of new articles everyday. The process of assignment of articles to categories is performed manually and it is a time consuming task. It requires knowledge about Wikipedia structure, which is beyond typical editor competence, which leads to human-caused mistakes – omitting or wrong assignments of articles to catego...
متن کاملEmpirical Processes with Applications to Statistics
equations as something "which Cauchy never even wrote" is obviously a wrong translation, what was meant being something like "which Cauchy did not write here". I have kept a list of dozens of lesser errors, but at least this translator does not fall to the depths of rendering Abel's famous statement "Cauchy est 'fou' " by "Cauchy is a fool" [3, p. 25]. The presentation of the book is scandalous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1603.08048 شماره
صفحات -
تاریخ انتشار 2016